

Clustering and Performance Testing on
Amazon Web Services (AWS)

February 2020

Table of Contents

Executive Summary 4

Introduction 4
Test Environment 4
Summary of Results 6

Throughput 6
Application Performance Index (Apdex) 7

Conclusion and Recommendations 8

Test Environment Setup 9
Test Environment 9

Application Server 9
Database Server 9
Web Server/Load Balancer 9
Load Test Client 10
Test App 10
Test Script 11
Test Methodology 11

Setup the Joget Server Cluster 12
Launch EC2 Instance 12
Install Java 12
Install Joget 12
Install Nginx 12
Configure Load Balancer 12
Configure Shared Database 13
Configure Shared File Directory 14
Optimize Java 14
Optimize Tomcat 15
Tomcat Session Persistence 15
Optimize MySQL 16

Add a New Joget Node 16
Launch New Joget Node 16
Configure New Joget Node 17
Add to Load Balancer 17

Use the EC2 Elastic Load Balancer 17
Setup Load Testing Clients 18

Create a folder to store Jmeter test file, results and reports 18
Download & Configure Jmeter 18
Run Jmeter 18

2

Performance Test Results 19
100 users 1 node 19
250 users 1 node 20
500 users 1 node 21
750 users 1 node 22
1000 users 1 node 23
1000 users 2 node cluster 24
2000 users 2 node cluster 25
2000 users 3 node cluster 26

Appendix: Sample Test Output 27
1000 users 1 node Jmeter output 27
2000 users 3 node cluster Jmeter output 27

DISCLAIMER: This report is prepared with the intention to provide information on expected
baseline performance from Joget DX. Although best efforts have been made to conduct an
unbiased test, there are many factors involved and the results cannot be guaranteed in different
environments. The reader of this report uses all information in this report at his/her own risk, and
Joget Inc shall in no case be liable for any loss resulting from the use of this report.

3

1. Executive Summary

1.1) Introduction

Joget DX​ is a next generation open source application platform for faster, simpler digital
transformation (DX). Joget DX combines the best of business process automation, workflow
management and low code application development in a simple, flexible and open platform.

This document is intended to describe and analyze the results of performance tests on a clustered
deployment of Joget DX on ​Amazon Web Services (AWS)​.

1.2) Test Environment

The tests were conducted on Amazon Web Services (AWS), specifically using the ​Elastic Compute
Cloud (EC2)​. AWS offered great flexibility in allowing servers and clients to be created and scaled
up as required.

The architecture of the clustered deployment is similar to the following diagram:

The test was conducted using the following product versions:

Joget:​ Joget DX Large Enterprise Edition Snapshot build 5ea5994
OS:​ Ubuntu 18.04.4 LTS
Java:​ OpenJDK 11.0.6
Web Application Server:​ Apache Tomcat 8.5.41
Database:​ MySQL 5.7
Web Server/Load Balancer:​ Nginx Web Server 1.14
Load Testing Tool: ​Apache JMeter 5.2.1

4

https://www.joget.org/joget-dx
https://aws.amazon.com/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

To establish the baseline performance, a HR Expenses Claim test app was used.

Using a think time of 10 seconds with random deviation of 3 seconds, the test script used covers
the following app usage:

1. View Login Page
2. Submit Login Form
3. View Expenses Claim Form
4. Get CSRF Token
5. Submit Expenses Claim Form
6. Get CSRF Token
7. Submit Expenses Claim Form to Approver
8. Logout

Tests were carried out for the following:

1. 100 concurrent users on 1 node (c5.xlarge)
2. 250 concurrent users on 1 node (c5.xlarge)
3. 500 concurrent users on 1 node (c5.xlarge)
4. 750 concurrent users on 1 node (c5.xlarge)
5. 1000 concurrent users on 1 node (c5.xlarge)
6. 1000 concurrent users on 2 nodes (c5.xlarge)
7. 2000 concurrent users on 2 nodes (c5x.large)
8. 2000 concurrent users on 3 nodes (c5x.large)

For each test, the JMeter summary results were collected. Once all the results were collected, the
throughput (requests per second) and average response times were compared and analyzed.

5

1.3) Summary of Results

Throughput
The results are summarized in the table and graph below:

Throughput (Request/Second)

Concurrent Users 1 node 2 nodes 3 nodes

100 11.96

250 27.54

500 42.08

750 51.68

1000 55.44 70.25

2000 77.69 101.04

In terms of throughput, a single c5.xlarge node (2 vCPU, 8GB RAM) maxed out at about 51
requests per second at 750 concurrent users. When the concurrent users increased to 1000, the
throughput remained about the same.

When scaling out (adding nodes to the cluster), the throughput seems to improve linearly as can be
seen by the throughput graph i.e. 70 requests per second for a 2 node cluster at 1000 concurrent
users, and 101 requests per second for a 3 node cluster to handle 2000 concurrent users.

6

Application Performance Index (Apdex)
Apdex​ is an open standard for measuring performance of software applications The results are
summarized in the table and graph below:

Apdex Score

Concurrent Users 1 node 2 nodes 3 nodes

100 1

250 0.993

500 0.899

750 0.872

1000 0.841 0.888

2000 0.799 0.794

7

https://www.apdex.org/

1.4) Conclusion and Recommendations

From the results it can be seen that for a basic baseline app, a single modestly spec-ed c5.xlarge
server (2 vCPU, 8GB RAM) can handle 500 concurrent users with acceptable response times. The
tests also show that scaling out horizontally (adding nodes to a cluster), supports an almost linear
increase in concurrent users. Performing vertical scaling can also improve performance, as
demonstrated in the use of the increasingly powerful EC2 instance types.

With emphasis on performance optimization at the core platform, Joget DX incurs low overhead
when running apps. If there are any specific bottlenecks, it would usually be at the application or
plugin level. At the application level, there are various guidelines and best practices that are
available in the ​Performance Optimization and Scalability Tips​ article in the ​Joget DX 7 Knowledge
Base​. Joget DX provides many performance related features such as ​Application Performance
Monitoring and Alerts​, ​Performance Analyzer​, and ​Userview Caching​.

For large deployments that support large numbers of concurrent users, it is important that the
environment is tuned and optimized e.g. Java VM tuning, app server tuning, database optimization,
as per the ​Deployment Best Practices​ article.

It is important to note that as Joget is a platform and not directly an end-user app, the scalability
and performance would depend on potentially many factors:

1. Total number of users
2. Maximum expected concurrent users
3. Number of apps running on the platform
4. Complexity of each of the apps
5. Amount of data generated in each app
6. Network infrastructure

The recommended deployment architecture would very much depend on the environment and
usage. Perhaps some things to be considered:

1. How many total and concurrent users are there? Will this grow in future?
2. In the current environment, is the current infrastructure sufficient for the load? Would it be

possible to increase the server resources?
3. If the needs outgrow one server node, it might be time to consider implementing clustering

and/or load balancing.
4. Another possible approach could be to partition the apps. Are there specific apps that incur

the highest load? Maybe it might be appropriate to separate apps into different servers.
5. Deploy Joget on cloud native platforms like ​Red Hat OpenShift​ to take advantage of

autoscaling​.

In summary, this report demonstrates the baseline performance of the Joget DX platform for a
basic app and shows how horizontal and vertical scaling can be used to support larger
deployments. Although these results can serve as a base guideline, it is recommended that
performance testing and optimisations are performed based on each deployment's unique
requirements, environments and usage patterns.

8

https://dev.joget.org/community/display/DX7/Performance+Optimization+and+Scalability+Tips
https://dev.joget.org/community/display/DX7/Joget+DX+7+Knowledge+Base
https://dev.joget.org/community/display/DX7/Joget+DX+7+Knowledge+Base
https://dev.joget.org/community/display/DX7/Application+Performance+Management
https://dev.joget.org/community/display/DX7/Application+Performance+Management
https://dev.joget.org/community/display/DX7/Performance+Analyzer
https://dev.joget.org/community/display/DX7/Performance+Improvement+with+Userview+Caching
https://dev.joget.org/community/display/DX7/Deployment+Best+Practices
https://www.openshift.com/
https://blog.openshift.com/how-to-automatically-scale-low-code-apps-with-joget-and-jboss-eap-on-openshift/

2. Test Environment Setup
2.1) Test Environment

The tests were conducted on Amazon Web Services (AWS), specifically using the ​Elastic Compute
Cloud (EC2)​. AWS offered great flexibility in allowing servers and clients to be created and scaled
up as required.

The architecture of the clustered deployment is similar to the following diagram:

Application Server
Joget:​ Joget DX Large Enterprise Edition Snapshot build 5ea5994
OS:​ Ubuntu 18.04.4 LTS
Java:​ OpenJDK 11.0.6
Web Application Server:​ Apache Tomcat 8.5.41
EC2 Instance:​ c5.xlarge

● 2 vCPU (virtual CPUs)
● 8GB RAM
● Java VM Options: -XX:MaxPermSize=256M -Xms4096M -Xmx4096M

Database Server
Database:​ MySQL 5.7
EC2 Instance:​ c5.xlarge

● 4 vCPU
● 8GB RAM
● Moderate network performance
● 1000 PIOPS

Web Server/Load Balancer
OS:​ Ubuntu 18.04.4 LTS
Web Server/Load Balancer:​ Nginx Web Server 1.14
EC2 Instance:​ c5.large:

● 2 vCPU

9

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

● 4GB RAM

Load Test Client
Load Testing Tool: ​Apache JMeter 5.2.1
OS:​ Ubuntu 18.04.4 LTS
EC2 Instance:​ t2.medium:

● 2 vCPU
● 4GB RAM

Test App
To establish the baseline performance, a HR Expenses Claim test app was used consisting of:

1. 1 process with 4 activities and 4 tools
2. 8 forms
3. 8 datalists
4. 1 userview containing menu pages to run the process and display the datalist and inbox

10

Test Script
The test script used covers the following app usage:

1. View Login Page
2. Submit Login Form
3. View Expenses Claim Form
4. Get CSRF Token
5. Submit Expenses Claim Form
6. Get CSRF Token
7. Submit Expenses Claim Form to Approver
8. Logout

A think time of 10 seconds was used, with random deviation of 3 seconds.

Test Methodology
The load tests were executed by using the latest ​Apache Jmeter​, which provides an automated
way of launching, running and collecting JMeter results.

Tests were carried out for the following:

1. 100 concurrent users on 1 node (c5.xlarge)
2. 250 concurrent users on 1 node (c5.xlarge)
3. 500 concurrent users on 1 node (c5.xlarge)
4. 750 concurrent users on 1 node (c5.xlarge)
5. 1000 concurrent users on 1 node (c5.xlarge)

11

https://jmeter.apache.org/

6. 2000 concurrent users on 2 nodes (c5.xlarge)
7. 2000 concurrent users on 3 nodes (c5.xlarge)

For each test, the JMeter summary results were collected. Once all the results were collected, the
throughput (requests per second) and average response times were compared and analyzed.

2.2) Setup the Joget Server Cluster
The following are brief descriptions of the steps used to setup the server instances:

Launch EC2 Instance
Login to the AWS Management Console and launch the appropriate EC2 instance running on
Ubuntu 18.04.4. Once started, SSH into the server.

Install Java
sudo apt-get install openjdk-11-jdk

Install Joget
Download Linux tar.gz bundle
Extract into /opt/joget
Run setup.sh and configure to the database

Install Nginx
For the load balancer, install Nginx web server

sudo apt-get install nginx

Configure Load Balancer

For the load balancer, another section in /etc/nginx/nginx.conf has been added

upstream joget {

least_conn;

server 172.31.31.172:8080 weight=1;

 server 172.31.30.203:8080 weight=1;

}

Increase the maximum number of open files by adding

fs.file-max=100000

into /etc/sysctl.conf

Increase the limit on the maximum number of open files for worker processes in Nginx by adding

worker_rlimit_nofile 30000;

into /etc/nginx/nginx.conf

Create a new file in /etc/nginx/sites-available, named joget

12

sudo vim /etc/nginx/sites-available/joget

Add the contents

server {

 listen 80;

 server_name 172.31.17.170;

 underscores_in_headers on;

 client_body_buffer_size 10K;

 client_header_buffer_size 1k;

 client_max_body_size 8m;

 large_client_header_buffers 2 1k;

 location / {

 proxy_pass http://joget;

 proxy_redirect off;

 proxy_pass_header X-CSRF-TOKEN;

 proxy_set_header Host 172.31.17.170;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-NginX-Proxy true;

 proxy_read_timeout 3000;

 proxy_buffers 32 4m;

proxy_busy_buffers_size 25m;

 proxy_buffer_size 512k;

 proxy_ignore_headers "Cache-Control" "Expires";

 proxy_max_temp_file_size 0;

 client_max_body_size 1024m;

 client_body_buffer_size 4m;

 proxy_connect_timeout 3000;

proxy_headers_hash_max_size 512;

proxy_send_timeout 3000;

proxy_intercept_errors off;

 }

}

Enable the new site and reload Nginx

sudo ln -s /etc/nginx/site-available/joget /etc/nginx/site-enabled/joget

sudo nginx -s reload

Configure Shared Database
To install a local MySQL (instead of RDS)

sudo apt-get install mysql-server

Configure database permissions

mysql -u root

Run the following MySQL commands to grant permissions to user ​joget​ and password ​joget

grant all privileges on jwdb.* to 'joget'@'%' identified by 'joget';

flush privileges;

quit

13

Configure MySQL to listen to database connections from remote hosts. Edit the my.cnf file with
your favourite editor

sudo vim /etc/mysql/my.cnf

Comment away the bind-address directive by adding a # in front of the line

#bind-address = 127.0.0.1

Restart MySQL

sudo systemctl restart mysql

Test remote connections. In the application server, test a remote connection to the database server
database_host

mysql -h database_host -u joget -p

Configure Shared File Directory
Install NFS (for sharing file system)

sudo apt-get install portmap nfs-kernel-server nfs-common

Detailed instructions can be found at
http://theredblacktree.wordpress.com/2013/05/23/how-to-setup-a-amazon-aws-ec2-nfs-share/

Create new directory /opt/joget/shared/wflow to mount the shared directory and set the directory
permissions

sudo mkdir -p /opt/joget/shared/wflow

sudo chmod 777 /opt/joget/shared/wflow

Mount the shared directory.

sudo mount -t nfs joget-server:/export/wflow /opt/joget/shared/wflow

Test read-write permissions to confirm that the directory sharing works.

echo test123 > /opt/joget/shared/wflow/test.txt

Optimize Java
Set appropriate Java heap settings e.g.

export JAVA_OPTS="-XX:MaxPermSize=256m -Xms4096M -Xmx4096M

-Dwflow.home=/opt/joget/wflow/ "

14

http://theredblacktree.wordpress.com/2013/05/23/how-to-setup-a-amazon-aws-ec2-nfs-share/

Optimize Tomcat
Edit server.xml and add connectors, especially maxThreads

 <Connector URIEncoding="UTF-8" port="8080" protocol="HTTP/1.1"

 connectionTimeout="20000" maxThreads="2000"

 redirectPort="8443" />

 <Connector port="9090" protocol="HTTP/1.1"

 connectionTimeout="20000" maxThreads="2000"

 scheme="https"

 proxyPort="443"

 redirectPort="443" />

Configure Linux ulimit Configuration:

ulimit -n 4096

Tomcat Session Persistence

To simulate an actual environment, in the event the load balancer does not support sticky
sessions, we can implement Persistent Manager in Tomcat, which has the capability to swap active
(but idle) sessions out to a persistent storage mechanism, as well as to save all sessions across a
normal restart of Tomcat.

We need to set ​org.apache.catalina.session.StandardSession.ACTIVITY_CHECK=true​ in
/opt/joget/apache-tomcat-8.5.41/conf/catalina.properties to ensure the persistent manager works
correctly.

In this testing we use a JDBC Based Store to save sessions in individual rows of a preconfigured
table in a database that is accessed via a JDBC driver. Create a database named tomcat and table
with the following SQL queries:

create database tomcat;

grant all privileges on tomcat.* to 'tomcat'@'%' identified by 'tomcat';

use tomcat;

create table tomcat_sessions (

 session_id varchar(100) not null primary key,

 valid_session char(1) not null,

 max_inactive int not null,

 last_access bigint not null,

 app_name varchar(255),

 session_data mediumblob,

 KEY kapp_name(app_name)

);

In order for the JDBC Based Store to successfully connect to the database, we need to place the
JAR file containing MySQL JDBC driver into /opt/joget/apache-tomcat-8.5.41/lib directory.

Last but not least, add the following content into /opt/joget/apache-tomcat-8.5.41/conf/context.xml

 ​<Valve className="org.apache.catalina.valves.PersistentValve"/>

 <Manager className="org.apache.catalina.session.PersistentManager"

 maxIdleBackup="0"

 maxIdleSwap="0"

15

 minIdleSwap="1"

 processExpiresFrequency="1"

 saveOnRestart='true'

 >

 <Store className="org.apache.catalina.session.JDBCStore"

connectionURL="jdbc:mysql://172.31.27.184/tomcat?user=tomcat&password=tomcat"

 driverName="com.mysql.jdbc.Driver"

 sessionAppCol="app_name"

 sessionDataCol="session_data"

 sessionIdCol="session_id"

 sessionLastAccessedCol="last_access"

 sessionMaxInactiveCol="max_inactive"

 sessionTable="tomcat_sessions"

 sessionValidCol="valid_session"

 />

 </Manager>

Remark: ​172.31.27.184​ is the IP address of MySQL Database server.

Optimize MySQL
Create /etc/mysql/mysql.cnf containing the following and restart MySQL

[mysqld]

query_cache_limit=1M

query_cache_size=32M

max_allowed_packet=16M

lower_case_table_names=1

collation_server=utf8_unicode_ci

character_set_server=utf8

key_buffer_size=16M

read_buffer_size=16M

read_rnd_buffer_size=16M

max_connections=10000

2.3) Add a New Joget Node

When adding a new node to the server cluster, the following steps are taken (in this sample the
new node hostname will be joget-server3):

Launch New Joget Node
Launch new instance of AMI

Choose appropriate security groups (default and nfs)

Configure New Joget Node
SSH into node

16

Edit /etc/hosts to add node hostname, and modify joget-server IP if necessary e.g.

127.0.0.1 joget-server3

172.31.30.203 joget-server

Edit /etc/hostname to modify node hostname e.g.

joget-server3

Modify hostname e.g.

sudo hostname joget-server3

Remount NFS share (if joget-server shared directory IP was modified)

Configure Tomcat for clustering by editing server.xml. Add ​jvmRoute="node03" ​to the ​Engine ​tag.

<Engine name="Catalina" defaultHost="localhost" jvmRoute="node03">

Restart Tomcat.

Add to Load Balancer
In the load balancer, edit /etc/nginx/nginx.conf to add the BalancerMember node e.g.

upstream joget {

least_conn;

server 172.31.31.172:8080 weight=1;

 server 172.31.30.203:8080 weight=1;

server 172.31.27.120:8080 weight=1;

}

then reload/restart Nginx.

2.4) Use the EC2 Elastic Load Balancer

It is possible to use the EC2 Elastic Load Balancer (ELB) instead of Nginx web server. To do so:

In the AWS Management Console,

Create a New Load Balancer

For Health Check, use /jw/web/json/workflow/currentUsername

If sticky sessions are required, it is configurable under Description, Port Configuration, Edit
Stickiness and select Enable Application Generated Cookie Stickiness with JSESSIONID.

17

2.5) Setup Load Testing Clients

Create a folder to store Jmeter test file, results and reports
mkdir -p ~/load_tests/reports

Download & Configure Jmeter
Download Jmeter from from ​https://jmeter.apache.org/

Extract the installer and edit user.properties file

vi apache-jmeter-5.2.1/bin/user.properties

change the value of APDEX satisfied and tolerated threshold.

Change this parameter if you want to override the APDEX satisfaction threshold.

jmeter.reportgenerator.apdex_satisfied_threshold=5000

Change this parameter if you want to override the APDEX tolerance threshold.

jmeter.reportgenerator.apdex_tolerated_threshold=10000

Run Jmeter

copy the jmeter test file (perf_v7_test_expenses_app-aws.jmx) in ~/load_tests/ and run jmeter-ec2

cd apache-jmeter-5.2.1

bin/jmeter.sh -n -t ~/load_tests/perf_v7_test_expenses_app-aws.jmx -l

~/tests/result.csv -e -o ~/load_tests/reports/

18

https://jmeter.apache.org/

3. Performance Test Results

3.1) 100 users 1 node

Application Server: 1 c5.xlarge node

Database Server: 1 c5.xlarge node with 1000 PIOPS

Client: 100 users in 1 t3.medium instance

Concurrent Users: 100 users

Ramp-up Time: 10s ramp-up

Think Time: 10s random delay 3s deviation

19

3.2) 250 users 1 node

Application Server: 1 c5.xlarge node

Database Server: 1 c5.xlarge node with 1000 PIOPS

Client: 250 users in 1 t3.medium instance

Concurrent Users: 250 users

Ramp-up Time: 25s ramp-up

Think Time: 10s random delay 3s deviation

20

3.3) 500 users 1 node

Application Server: 1 c5.xlarge node

Database Server: 1 c5.xlarge node with 1000 PIOPS

Client: 500 users in 1 t3.medium instance

Concurrent Users: 500 users

Ramp-up Time: 50s ramp-up

Think Time: 10s random delay 3s deviation

21

3.4) 750 users 1 node

Application Server: 1 c5.xlarge node

Database Server: 1 c5.xlarge node with 1000 PIOPS

Client: 750 users in 1 t3.medium instance

Concurrent Users: 750 users

Ramp-up Time: 75s ramp-up

Think Time: 10s random delay 3s deviation

22

3.5) 1000 users 1 node

Application Server: 1 c5.xlarge node

Database Server: 1 c5.xlarge node with 1000 PIOPS

Client: 1000 users in 1 t3.medium instance

Concurrent Users: 1000 users

Ramp-up Time: 100s ramp-up

Think Time: 10s random delay 3s deviation

23

3.6) 1000 users 2 node cluster

Load Balancer: Nginx web server c5.large

Application Server: 2 c5.xlarge node

Database Server: 1 c5.xlarge node with 1000 PIOPS

Client: 1000 users in t3.medium instance

Concurrent Users: 1000 users

Ramp-up Time: 100s ramp-up

Think Time: 10s random delay 3s deviation

24

3.7) 2000 users 2 node cluster

Load Balancer: Nginx web server c5.large

Application Server: 2 c5.xlarge node

Database: Database Server: 1 c5.xlarge node with 1000 PIOPS

Client: 2000 users in t3.medium instance

Concurrent Users: 2000 users

Ramp-up Time: 100s ramp-up

Think Time: 10s random delay 3s deviation

25

3.8) 2000 users 3 node cluster

Application Server: 3 c5.xlarge node

Database: Database Server: 1 c5.xlarge node with 1000 PIOPS

Client: 2000 users in 1 t3.medium instances

Concurrent Users: 2000 users

Ramp-up Time: 100s ramp-up

Think Time: 10s random delay 3s deviation

26

Appendix: Sample Test Output

1000 users 1 node Jmeter output

2000 users 3 node cluster Jmeter output

27

